Stabilized Finite Element Methods for Flux

نویسندگان
چکیده

منابع مشابه

Stabilized Finite Element Methods

We give a brief overview of stabilized finite element methods and illustrate the developments applied to the advection-diffusion equation.

متن کامل

Flux-conserving Finite Element Methods

We analyze the flux conservation property of the finite element method. It is shown that the finite element solution does approximate the flux locally in the optimal order, i.e., the same order as that of the nodal interpolation operator. We propose two methods, post-processing the finite element solutions locally. The new solutions, remaining as optimal-order solutions, are flux-conserving ele...

متن کامل

Consistent Local Projection Stabilized Finite Element Methods

Abstract. This work establishes a formal derivation of local projection stabilized methods as a result of an enriched Petrov-Galerkin strategy for the Stokes problem. Both velocity and pressure finite element spaces are enhanced with solutions of residual-based local problems, and then the static condensation procedure is applied to derive new methods. The approach keeps degrees of freedom unch...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Revisiting stabilized finite element methods for the advective–diffusive equation

We give a brief overview of stabilized finite element methods and illustrate the developments applied to the advection–diffusion equation. This article presents a concise perspective of the developments emanated from the works started in the 1980s through today. 2005 Elsevier B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2017

ISSN: 1877-0509

DOI: 10.1016/j.procs.2017.05.126